3^2x-3=27^x+1/3

Simple and best practice solution for 3^2x-3=27^x+1/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^2x-3=27^x+1/3 equation:



3^2x-3=27^x+1/3
We move all terms to the left:
3^2x-3-(27^x+1/3)=0
We get rid of parentheses
3^2x-27^x-3-1/3=0
We multiply all the terms by the denominator
3^2x*3-27^x*3-1-3*3=0
We add all the numbers together, and all the variables
3^2x*3-27^x*3-10=0
Wy multiply elements
9x^2-81x-10=0
a = 9; b = -81; c = -10;
Δ = b2-4ac
Δ = -812-4·9·(-10)
Δ = 6921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6921}=\sqrt{9*769}=\sqrt{9}*\sqrt{769}=3\sqrt{769}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-3\sqrt{769}}{2*9}=\frac{81-3\sqrt{769}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+3\sqrt{769}}{2*9}=\frac{81+3\sqrt{769}}{18} $

See similar equations:

| 6(4d+5)=–6d | | .5(9x+25)=4x+17 | | |y|+7=16 | | 1/29x+25=4x+17 | | j5 = 4 | | 98=h+17 | | t-42=8 | | 5x2-13x+7=0 | | 4p2=2p-5 | | 162x+4=30 | | 150=5(1.5x-3) | | 8r–(5r+4)=–31 | | c÷8=6 | | P(x)=2x³+5x−3,Q(x)=4x−3x²+2x³. | | h+13=28 | | 3x−8=7−2x | | 3a^2=18a-7 | | r-79=3 | | 4X-1=9x-1=5x | | 4^{x^2-11x+30}=16 | | (x+15)°+25°=(3x-10)° | | 16(5x+8)=144 | | 3(10^x)=21 | | –6+7g=6g | | 9x-2x+9=x-6+15 | | 7+2=x-14 | | 8y+14=2y-4 | | j-43=28 | | -5.9-6x=4.3 | | x-2.1=2.5 | | 4x²-26=-10 | | 76=3x |

Equations solver categories